Saturday , January 18 2025
Home / Environment / The make believe future

The make believe future

US President John F. Kennedy began the political fad of setting targets for the future when, on 25 May 1961, he persuaded the Congress to agree to the goal of landing men on the moon by the end of the decade.  On 12 September 1962 he made his more famous public speech at Rice University:

“We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win…”

Notice that Kennedy referred to going to the moon as hard; not once did he use the word “impossible.”  Even in 1962, all of the technologies required already existed.  For sure they needed refining and developing.  Certainly there would be hardships – including several tragic deaths – along the way.  But success largely depended upon the political, organisational and economic requirements of the project rather than the creation of novel technologies.

Although largely a Cold War project, the moon landings were widely viewed at the time as a stepping stone on humanity’s journey of discovery to the stars.  In hindsight, the years 1969-72 marked the apex of human progress.  The oil shocks and economic crises of the 1970s removed the optimism of the previous two decades.  Humans were never again to venture out beyond a low Earth orbit.  The new space technologies and energy sources that might have bridged the enormous distances between us and our nearest celestial neighbours failed to put in an appearance.  Closer to home, other “leading edge” technologies such as commercial supersonic flight were also being mothballed – only the Concorde, heavily subsidised by British and French taxpayers, continued to ferry the rich and famous across the Atlantic.

We have been on a downward trajectory ever since.  During the boom years 1953-73, as the economies of the developed and developing states made the switch from coal to oil, energy per capita rose exponentially alongside oil production.  Had it not been for the 1973 OPEC embargo, global oil production might have managed a couple more years of exponential growth before the inevitable slowdown began.  As it was, 1973 – the year after the final moon landing – marks the point at which energy per capita across the developed economies went into reverse.  This sounds technical, but the consequence was that productivity (essentially using more energy or using energy more efficiently to generate more economic value) began to slow.  And since productivity growth is what allows wage growth, wages began to fall too.  The wage-price inflationary spiral of the 1970s – exacerbated by state currency-printing and capital control policies – was the result of a battle between capital and organised labour over the relative shares of falling productivity growth.

John Michael Greer described the practical consequences when he pointed to the difference in living standards between a semi-skilled manual worker in the 1970s and a semi-skilled worker of today.  In those days, a single worker on the average semi-skilled wage could afford to buy a house, support a family, run a car and enjoy annual holidays.  Today a single semi-skilled worker would be lucky to avoid homelessness.  The consequence of our now falling energy per capita is that productivity has ceased entirely.  We now face a series of linked crises in the economy, environment and energy which severely limit our scope for action.  Wages in the developed economies have been stagnant since the financial crash in 2008.  Wages in the emerging market economies are now also slowing.  Outside a handful of niche industries like tech and pharmaceuticals – which survive on the back of huge state subsidies – investment has switched away from technology into a series of derivative financial instruments that have no practical value and add nothing to economic development.

Even things that were once hard, but possible – like landing people on the moon – are now beyond us.  But John F. Kennedy’s words continue to echo down the decades to reach the ears of contemporary politicians who mistakenly believe that we only need to set a goal and smart people somewhere else will make it happen.  So it is that our political leaders have committed to decarbonising the economy by 2050 despite – unlike the Apollo Project – several of the required technologies and the resources to construct them only existing in the pages of science fiction novels.

More recently, the Prime Minister of the (increasingly un-) United Kingdom – a man who studied classics and, apparently is clueless about climate change – has decided to bring forward to 2035 the ban on new internal combustion engine cars and vans.  Worse still, and to the horror of motoring organisations, vehicle manufacturers and grid engineers, he has decided to include hybrid vehicles in the ban.  On the same day – and also in response to government climate commitments – the UK air industry announced plans to become “net zero carbon” by 2050.  This, apparently, is to be achieved using yet-to-be-invented lean-burn engines which use yet-to-be-invented artificial hydrocarbon fuels manufactured by combining hydrogen with carbon dioxide sucked out of the air.

At least electric cars actually exist.  The infrastructure required to make the switch is an altogether different matter.  As Will Bedingfield at Wired warned last month:

“[A] spectre is haunting the UK’s emissions targets – the spectre of nuclear retirement… By the early 2030s, just one of the UK’s seven nuclear power stations will be operational. Over the last few years, plans to construct three new power stations – Hitachi’s Wylfa Newydd nuclear plants on Anglesey in Wales and Oldbury in Gloucestershire, and Toshiba’s Moorside project in Cumbria – which together could have met 15 per cent of the UK’s future electricity demands, have been scrapped.

Meanwhile, efforts to fill the gap with non-renewable renewable energy-harvesting technologies have stalled, as Phillip Inman at the Guardian explains:

“Britain’s green economy has shrunk since 2014, heightening concerns that the government will miss targets to cut greenhouse gas emissions by the middle of the decade.

“The number of people employed in the “low carbon and renewable energy economy” declined by more than 11,000 to 235,900 between 2014 and 2018, according to the Office for National Statistics (ONS). Green businesses fared little better, seeing their numbers drop from an estimated 93,500 to 88,500 over the same four-year period.”

There are some big offshore wind projects still to come online, but without government subsidies, these may be the last of their kind.  In any case, they provide nothing like the generating capacity which will be lost as coal and nuclear plants are decommissioned.

The absolute numbers also hide the technical issues around intermittency and grid frequency which resulted in a nationwide blackout in August last year.  National Grid had been relying on combined cycle gas turbine plants, which can rapidly increase and decrease production, to iron out the intermittent generation from wind and solar.  However, as the percentage of renewable energy fed into the grid passes two-thirds, it appears that this solution is no longer sufficient.  The temporary – and probably unsustainable – fix for this is to pay for gas power plants just to keep the turbines spinning even if the electricity generated is not needed.  As Nina Chestney and Noor Zainab Hussain at Reuters report:

“National Grid’s said on Wednesday it had agreed contracts with five parties worth 328 million pounds ($431 million) over a six-year period for services to manage the stability of its electricity system in Britain…

“The key service to be provided is what is known as ‘inertia’ on the grid, which helps to keep the electricity system running at the right frequency… Under the new approach, National Grid said inertia will be achieved without having to provide electricity. This will allow more renewable generation to operate and ensure system stability at lower costs.”

The “lower costs” refers to the difference between this approach and paying for expensive storage.  Paying someone to provide additional inertia is not cheaper than not having to do it at all.  Even so, inertia balancing is just one of a plethora of the headaches currently stressing grid managers and engineers.  As James Sillars at Sky reports:

“The UK’s electricity network needs urgent investment to prepare for an electric vehicle future or risk blackouts, a report for the government has warned.

“The Electric Vehicles Energy Task Force, commissioned by ministers, urges a ‘smart charging’ approach – utilising times of weak demand – along with a power network able to adapt to shifts in electricity use.”

Nor, apparently, is electric vehicle infrastructure easily constructed by energy engineering companies tasked with keeping an increasingly old and frail grid infrastructure operating.  When it comes to public charging facilities, delays of several years are not uncommon.  As Peter Campbell and Nathalie Thomas at the Financial Times reported last month:

“Britain’s electricity network is ‘not fit for purpose’ and is stifling the rollout of electric vehicle chargers along key trunk roads in the UK, say motorway services operators.

“Electric vehicles currently account for only about 2 per cent of sales in the UK, but a steep rise is expected during the next two years as carmakers strive to meet new stringent CO2 targets and as the country gears up to hit its target of net zero carbon emissions by 2050. 

“Motorway service areas are preparing to increase their charging provisions to meet the jump in demand. But Simon Turl, chairman of operator RoadChef, said his company’s attempts to add charging services have been held up by distribution network operators (DNOs), which own local electricity grids and demand millions of pounds and waits of up to three years, to install new power lines.”

Electric vehicles are, of course, merely one component of the fantasy zero-carbon future.  The wider task is truly staggering, as another Sky News report explains:

“A mass recruitment drive involving hundreds of thousands of people is needed by the energy sector if the UK’s 2050 target for zero net emissions is to be met, a new report claims.

“The National Grid says 400,000 skilled tradespeople, engineers and other specialists are required across the industry, with at least 117,000 of them needed in the next 10 years.

“However the report says the sector is facing stiff competition for staff from other areas such as tech and finance, while a looming retirement crunch and not enough young people choosing to study science, technology, engineering and maths, are making matters worse.”

As I pointed out last month:

“An energy transition which requires this number of new skilled workers is simply not going to happen.  Nor is the UK in a position to easily afford the £3.75bn per year additional wage bill for the 117,000 new workers in the 2020s; still less the £12.8bn annual wage bill in the 2030s and 2040s.  In the event that government continues adding the cost of upgrading the energy grid onto household bills, this amounts to an annual increase of £667 for every household in the UK.  At a time when household purchasing power – still lower in real terms than in 2008 – has fallen to the point that tens of thousands of retail jobs are being lost, it is doubtful that the economy can afford the additional cost without being plunged into recession.”

This is where our tendency to believe that since economists are on a par with astrologers and homeopaths, the economy itself doesn’t matter.  However – as Henry Ford discovered in the early days of oil-powered vehicles – unless the workers can afford the technologies, the energy revolution simply isn’t going to happen.  And at present, American cities have joined the third world while urban British workers shiver in the dark, as a new report from The Prince’s Trust explains:

“The research suggests that young people are skipping meals, selling items that are important to them and not putting the heating on to save money. The research reveals a gap between the confidence levels of the UK’s most and least disadvantaged young people, with those from disadvantaged backgrounds feeling less hopeful about their future prospects…

“The research shows that one in three young people aged 18 and over with an overdraft facility are regularly using it, and one in five (18 per cent) go further into their overdraft each month. Over a fifth (22 per cent) of young people in rented accommodation struggle to pay their rent. Borrowing from family and friends has also been a necessity for some, with one in four young people (26 per cent) admitting they have done this in the past year. However, six in ten young people (62 per cent) are embarrassed to ask others for financial support.”

When John F. Kennedy sold the Apollo Project to the American people, he had the luxury of an expanding economy in which all but the very poorest were experiencing rising standards of living.  The energy, materials, technology and the surplus value needed for the moon shot were all available in abundance.   None of those prerequisites is true of the proposed energy transition today.  The energy cost of energy has risen beyond the point that developed economies can continue to grow; and is fast reaching the point at which the emerging economies which have provided at least some growth for the past decade are beginning to stall.  Whereas the 1960s USA had access to the raw resources of a largely untapped planet, today we are squeezing the last accessible dregs out of our exhausted Earth.  As a recent letter from scientists at the Natural History Museum warned:

“To replace all UK-based vehicles today with electric vehicles (not including the LGV and HGV fleets), assuming they use the most resource-frugal next-generation NMC 811 batteries, would take 207,900 tonnes cobalt, 264,600 tonnes of lithium carbonate (LCE), at least 7,200 tonnes of neodymium and dysprosium, in addition to 2,362,500 tonnes copper. This represents, just under two times the total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and at least half of the world’s copper production during 2018. Even ensuring the annual supply of electric vehicles only, from 2035 as pledged, will require the UK to annually import the equivalent of the entire annual cobalt needs of European industry…

“There are serious implications for the electrical power generation in the UK needed to recharge these vehicles. Using figures published for current EVs (Nissan Leaf, Renault Zoe), driving 252.5 billion miles uses at least 63 TWh of power. This will demand a 20% increase in UK generated electricity.

“Challenges of using ‘green energy’ to power electric cars: If wind farms are chosen to generate the power for the projected two billion cars at UK average usage, this requires the equivalent of a further years’ worth of total global copper supply and 10 years’ worth of global neodymium and dysprosium production to build the windfarms.

“Solar power is also problematic – it is also resource hungry; all the photovoltaic systems currently on the market are reliant on one or more raw materials classed as “critical” or “near critical” by the EU and/ or US Department of Energy (high purity silicon, indium, tellurium, gallium) because of their natural scarcity or their recovery as minor-by-products of other commodities. With a capacity factor of only ~10%, the UK would require ~72GW of photovoltaic input to fuel the EV fleet; over five times the current installed capacity. If CdTe-type photovoltaic power is used, that would consume over thirty years of current annual tellurium supply.

“Both these wind turbine and solar generation options for the added electrical power generation capacity have substantial demands for steel, aluminium, cement and glass.”

Put simply, there is not enough Planet Earth left for us to grow our way to sustainability.  And even if there was, the environmental damage of constructing an entirely new infrastructure would likely destroy what remains of the human habitat anyway.  In any case, without further economic growth and in the absence of a radical redistribution of wealth of a kind that would have made Lenin blush, it is hard to imagine increasingly impoverished populations voting for ever more expensive energy bills.  There is a reason why Luddites like Trump and Morrison are currently getting away with dismantling environmental laws and regulations – and they are the relatively benign face of a nationalist populism that will get a lot worse if current levels of inequality continue to grow.

The challenge of a zero-carbon civilisation only appears realistic when one of its elements is viewed in isolation.  Once it is seen in its complete energetic, material, technological, environmental, economic and political dimensions it is an obvious fiction.  There is simply no way in which we get to continue with business as usual simply by swapping one energy technology for another.  And attempts at channelling the ghost of John F. Kennedy will not change this.

As you made it to the end…

you might consider supporting The Consciousness of Sheep.  There are seven ways in which you could help me continue my work.  First – and easiest by far – please share and like this article on social media.  Second follow my page on FacebookThird follow my channel on YouTubeFourth, sign up for my monthly e-mail digest to ensure you do not miss my posts, and to stay up to date with news about Energy, Environment and Economy more broadly.  Fifth, if you enjoy reading my work and feel able, please leave a tip. Sixth, buy one or more of my publications. Seventh, support me on Patreon.

Check Also

It begins

Nobody has a plan... its just another instance of the neoliberal Underpants Gnomes approach to problem solving.